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ABSTRACT

The goal of this study was to provide experimental data on the
lateral-torsional buckling of braced beams. Of particular interest was
the magnitude of the brace forces, the brace stiffness necessary to
develop a particular critical moment and the effect of forced initial
imperfections on these parameters. To accomplish this goal, twenty
tests were performed using a wide flange beam which was loaded in the
elastic range with uniform moment and braced at the midspan of the
compression flange. The brace stiffness and magnitude of the forced
initial imperfections were varied.

Brace forces less than 0.2 percent of the compression region
force were observed for the beams buckling into the second mode. A
finite brace stiffness was adequate to force the beam to buckle into the
second mode and the test results were found to be in agreement with
analytical methods of predicting this brace stiffness. The required
stiffness for a distributed brace applied along the compression flange
was determined using the results from the finite element program BASP

£71.
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CHAPTER I

INTRODUCTION

1.1 Bracing

Bracing is used to prevent the displacement of a compression
element in a direction other than that of the compression force. The
compression element may be a column which is compressed by applied axial
loads or the compression flange of a beam which is loaded by applied
transverse loads. Buckling of these elements can occur when equilibrium
can exist at a deflected position at which the member axis does not
coincide with the line of action of the compression force. The P-delta
moment developed at this deflected position is resisted by additional
bending of the element cross-section. Increasing the bending resistance
of the section would increase the load at which buckling may occur;
however, this may not be as economical as using a few well-placed braces
depending on the cost of connections and the cross-=section material
saved.

Bracing of beams may be provided by another part of the primary
load carrying system, such as a slab, or a secondary bracing member such
as bridging. The provision of bracing for a gravity loaded member has
been, historically, an engineering judgment. The empirical approach
based on years of experience can be augmented by analytical procedures.
For example, the SSRC Guide to Stability Design Criteria for Metal
Structures [1], herein referred to as the "SSRC Guide,"

1



2
suggests that a brace should be designed to resist 2 percent of the
force in the compression member. This approach does not explicitly
guarantee that the stiffness of the brace is sufficient also. The
stiffness and strength requirements for column braces have been
researched and are reviewed in the next section. The bracing of beams,
however, has received less attention than columns and is the subject of

this research project.

1.2 Bracing of Ideal Columns

A member is defined as béing idezl if it is perfectly straight
and has a homocgeneous and isotropic material. As an increasing compres-
sion force is applied to a coincident centroid and shear center longi-
tudinal axis, there will be no lateral deflection or bending until the
column is loaded to its bifurcation load. At this point, there are two
possible equilibrium positions: the column can either remain perfectly
straight or it can deflect an indefinite distance. This behavior is
typical of ideal columns loaded in compression regardless of the type
and location of braces and supports as long as the system is initially
stable. The critical load is that at which bifurcation of equilibrium
occurs. In the case of a column with an elastic brace at midspan, as
shown in Fig. 1.1(a), the axial load, P, is sufficient to cause the
column to buckle into the first mode shape. The relationship between
the critical load, P, and the brace stiffness, g, was developed by

Mutton and Trahair [2], in terms of the length of the column, L, and the

Euler load for this length, Pgq» a@s follows:
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Fig. 1.1 Behavior of braced ideal column
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g = . - for 0SP_<4P. (1.1)
—_— e e
1-(tan 5 Pcr/Pel /3 Pcr/Pel)

When the brace stiffness is equal to zero, which is the case if there is
no brace, Eq. (1.1) is satisfied only when Pcr/Pe1 = 1, and the critical
load is the Euler load, Pgq = mPEI/L2. As the brace stiffness is
increased, a higher load is required to cause the member to buckle.‘ The
stiffness, which is sufficient to cause buckling into the second mode
shape, as shown in Fig. 1.1(b), is defined as the ideal brace stiffness,

Bigeay® Which is given by Refs. 2 and 5 as

16ﬂ2EI

B_ = e (1-2)
ideal L3

The relationship between critical load and the brace stiffness is shown
in Fig. 1.1(e). For brace stiffnesses between zero and Bideals the Pop-
8 relationship is nearly linear and departs from this, at most, 3 per-
cent conservatively. When the brace stiffness is greater than Bi4ea1,
there is no further increase in the critical load since buckling of the
column takes place between the brace and the ends.
Winter [6] approximated the behavior of a braced ideal column by

assuming a hinge at the brace point, as shown in Fig. 1.2(a). A hinge,
assumed at the brace point, is appropriate when an inflection point is

expected at this location as in the case of the second mode shape. The
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required brace stiffness to support a particular load can be found from

statics and is given by

g = — (1.3

The relationship between critical load and the brace stiffness is shown
in Fig. 1.2(b) as a solid line. If the brace stiffness is zero, the
system is unstable in the unloaded condition. As the brace stiffness is
increased, the critical load increases linearly until the stiffness is
large enough to cause buckling into the second mode shape. Substituting
the second mode critical load, MﬂeEI/L2, into Eq. (1.3), the ideal brace
stiffness is determined to be equal to that given in Eq. (1.2). If the
brace stiffness is increased above the ideal value, the critical load
will not change since buckling takes place between the brace and the
ends. Winter's model can also be used to approximate the behavior of a
continuous column when the brace stiffness approaches the ideal stiff-
ness. The relationship between the load and the stiffness for the
continuous case is shown as a dotted line, in Fig. 1.2(b).

In the analysis of ideal compression members, the critical load

corresponding to a particular brace stiffness can be calculated but the

magnitude of the brace force cannot be determined. The lateral deflec-
tions at the bifurcation point are indefinite which precludes the multi-
plication of brace deflection times the brace stiffness to get the brace

force. The brace force, however, can be calculated when the compression

member is assumed to be non-ideal or imperfect.
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Fig. 1.2 Hinge assumed at brace point.



1.3 Columns with Imperfections

Geometric imperfections will affect the behavior of a real column
[3]. Immediately upon loading, a P-delta moment will be present on the
celumn cross-section since the neutral axis for bending will not be
coincident with the line of action of the compression force. The larger
the initial imperfection, the larger the P-delta moment. To develop a
resisting moment equal to the P-delta moment, the column must deflect
further. Representing the initial imperfection shape which is a half
sine wave with a magnitude equal to Aoat midspan, the load-deflection

relationship for an unbraced column is given by Winter [6] as

PA
0

Pel(l—P/Pel)

In

<
P = P,y (1.4)

where A, is the additional deflection, Pej is the Euler load, and P is
the axial load. Equation (1.4), plotted in Fig. 1.3, represents a
hyperbola with a horizontal assymptote at P = Pgq. The column must
deflect laterally a distance of 20 timesAo to carry a load of 95
percent of Pg1e The Euler or bifurcation load is achieved at an equi-
librium position which corresponds to an infinite lateral displacement.
If the initial shape consists of component shapes of higher buckling
modes, the load vs. deflection plot will deviate significantly from the
hyperbolic function, given by Eq. (1.4) and shown in Fig. 1.3, at low
load levels but will be well represented by this function as the load

approaches Pg1+ The case of an unbraced column having an arbitrary
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initial shape is presented in Appendix A where a relationship between
load and deflection is developed.

For braced imperfect columns, the bifurcation load for an ideal
member is the maximum or critical load for an imperfect member. This
load is attained only after some or all of the span has deflected
laterally an infinite distance. The load-deflection plots for a pinned
end column having various brace stiffnesses are shown in Fig. 1.4 When
the brace stiffness, B, equals zero, the critical load is the Euler load
for the entire length. The relztionship between critical load and brace
stiffness is linear up to the ideal brace stiffness, as shown in Fig.
1.1(c). The load vs. deflection curves in Fig. 1.4 become more hyper-
bolic in character as the load approaches the critical load for a given
brace stiffness. The behavior at low load levels is very dependent on
the initial imperfection shape having components which correspond td
higher buckling modes. The differential equation solution for the

braced case is alsc developed in Appendix A. The lateral deflection of

the brace p01nt becomes 1nf1n1te when ‘the column load approache51ts’

erltlcal value if the brace stlffnesses is smaller than the ideal bracem

phenomenon is shown in Fig. 1.4, where the brace deflection is limited

to a finite displacement, A , while the spans between the brace and

max

the ends deflect an infinite distance. It is desirable to design a

brace with a brace stiffness greater than the ideal stiffness in order

to 1limit the brace deflection and, consequently, the brace force. The
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magnitude of this limiting deflection is dependent on the initial shape
and would be maximum when this shape has component shapes which have
positive midspan amplitudes for the first and higher order mode shapes
which are symmetric about the brace point.

In the foregoing discussion it was assumed that the material
remains linearly elastic until failure by lateral buckling takes place.
For members with material having an elastic limit, the superposition of
axial stress and the lateral bending stress will always exceed the yield
stress before the member can attain its bifurcation load, since the
column must deflect laterally an infinite distance to carry its critical

load. Figure 1.5 shows the load vs. deflection behavior of a column

with a material having an elastic limit. Depending on the magnitude of

the initial imperfections, the usable capacity of the member may be

51gn1flcant1y below that predlcted by the blfurcatlon load., Once the

............

material yields, the lateral bending stiffness starts to decrease.
Failure will be sudden if the member is loaded by gravity load or other

non-removable load. If a design procedure presumes that a member can

carry'a load equal to its blfurcatlon load, any dlscrepancy due to the

1mperfect10ns or non llnear material behav1or must be covered by the

[P IO i

safety factor us d The bifurcation load is still an important concept

because the actual load vs. deflection curves can be approximately
described in terms of this load and the magnitude of the initial imper-
fections as is done in Eq. (1.4).

When testing actual compression members, the assumptions used in

an elastic range buckling analysis will become invalid when the specimen



LOAD

Bifurcation Load
\—Elastic Limit Curve

A -ADDITIONAL DEFLECTION

Fig. 1.5 Column having elastic limit.
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starts to yield. Critical loads predicted by an elastic analysis will
never be attained. The critical load can be obtained by extrapolation
from the load vs. deflection data if these data points are taken at high
load levels where the cross-section is still elastic and the data has

the hyperbolic character of Eq. (1.4). It is important to load the

specimen as close to the critical buckling load as possible to ensure

- I

that the predominggp deflection mode has.an amplitude which is much

larger than all other possible mode shapes... This, however, may not be

possible with stocky cross-sections which will yield at loads which are
a much lower than the elastic buckling load. The most common method for
determining the experimental elastic buckling loads is the use of the
Southwell plot [4]. If the test data isrstrongly hyperbolic throughout
the entire range of deflection,.the critical load and the magnitude of
the initial imperfection can be calculated by this method. These par-
ameters can then be used with Eq. (1.4) to describe the load vs. deflec-
tion behavior. The Southwell plot and other plotting methods such as
the Lundquist [8] and Meck [9] plots can be applied to the buckling
deflections of beams. These methods will be discussed in detail in

Chapter V.

1.4 Beam vs. Column Behavior

Mutton and Trahair [2] show that the buckling of an ideal, or
perfectly straight, braced beam is similar to a braced column. Specifi-
cally, they demonstrated that beams braced at midspan will buckle into
the second mode shape when the stiffness of this brace is a finite value

like the ideal brace stiffness for columns. The foregoing discussion on
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braced column behavior will be used as a basis for describing the
behavior of the compression flange of flexural members. The differen-
tial equation solution for a braced beam is much more complex than that
of the braced column since it involves the solution of two simultaneous
equations for the lateral deflection and twist. The load-deflection
behavior of an imperfect beam has been documented by Zuk [5]. The form
of the derived solutions is difficult to interpret and implement. As a
result of the complexity of the solutions, braced imperfect beams have

received less attention analytically and experimentally than columns.

1.5 Objectives of the Research Program

A testing program was undertaken to study experimentally the
lateral-torsional buckling of braced beams. The program involved the
testing of a steel wide-flange beam under uniform moment. An elastic
brace was attached to the compression flange at the midspan of the test
beam. The stiffness of the brace was varied to observe how this param-
eter affected the lateral-torsional buckling behavior of the specimen.
Several forms of initial imperfections were also considered. The objec-
tive of the experimental program was to measure the brace forces and to
study the effects of brace stiffness and initial imperfections on the
lateral-torsional buckling behavior.

A review of pertinent analytical methods in the area of braced
beams is given in Chapter II followed by a detailed description of the
testing program in Chapter III. The test reults are presented in

Chapter IV and compared to the analytical predictions in Chapter V.
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Several example problems are given in Chapter VI. Finally, conclusions

are drawn regarding the bracing requirements for flexural members.



CHAPTER I1I

BRACING OF BEAMS

The ideal brace stiffness required to force a column to buckle
into the second mode shape has been discussed in Chapter I. The ideal
brace stiffness required to force a beam, loaded by uniform moment and
braced at the compression flange at midspan, to buckle into the second
mode shape is given in this chapter. This stiffness is derived from the
solutions to differential equations of braced beams which are developed
by Mutton and Trahair [2]. Similarities between the solutions for
braced beams and columns suggest a model based on column behavior [6].
Ideal beam theory and this column behavior model are reviewed and the
evaluation of proper bracing for the compression flange of a beam is

detailed in this chapter.

2.1 Ideal Brace Stiffness for Compression Flange

A simply-supported wide-flange beam, loaded by uniform moment and
laterally braced at the compression flange at midspan, is shown in Fig.
2.1(a). Three types of displacement, as shown in Fig. 2.1(b), are
possible at any cross-section: translation parallel to the Y-Y axis,
which 1is defined as inplane deflection resulting from the loads and
moments which are applied in the plane of the web; translation parallel
to the X-X axis, which is defined as lateral or out-of-plane deflection,

u, and twist, ¢, the rotation of the beam about its longitudinal axis.

15
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(a) inplane loading

Y b u
l —
X ——= X=X
== b et
!
Y
INPLANE

OUT-O0F-PLANE

TWIST

(b) modes of beam deflection

Compression Flange
Deflected Laterally~ _

SECTION A-A
Inplane Deflection

Not Shown For Clarity

(c) lateral-torsional buckling

Fig. 2.1 Wide flange beam loaded by uniform moment.
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When the beam is loaded by inplane forces, there will be inplane
moments along the span of the beam. If the compression flange is not
sufficiently supported against lateral deflection, the cross-~section can
bend laterally and twist, as shown in Fig. 2.1(c). This behavior is
'characterized as lateral-torsional buckling.

Three simultaneous differential equations can be written to
describe the lateral-torsional buckling of a beam. The influence of the
inplane deflections is usually neglected which leaves the following two

simultaneous equations for lateral deflection and twist:

dzu
EI — -Mp = O
y dz2
(2.1
do a3 du
GJ] — - ECw ———5 + M — = 0
dz dz dz

where z is the position along the longitudinal axis; M is the moment
along this axis; E and G are the elastic and shear modulus, respec-
tively; Iy is the weak axis moment of inertia; J is the St. Venant

torsional constant; and C, is the warping constant. From the SSRC Guide

[1], the solution to these equations for the critical moment is

1/2 2
ﬂ(EIyGJ) i ECw

Moo= — YTy Yy
cx (aL) (aL)26J

1/2 (2.2)



18
where al is the length between inflection points of the beam. The first
mode critical moment is calculated using a = 1.0 if there is no brace
along the span. The second mode critical moment can be calculated using
a = 0.5 if a brace is placed at midspan which has sufficient stiffness
to force the beam to buckle intc the second mode shape. This solution
is adequate only if the lateral deflection and force at the brace point
is zero. However, if the brace stiffness is not sufficient to enforce
the second mode, there will be a force in the brace and extra terms must
be included in the equilibrium relations, Eq. (2.1), as is done in
Ref. 2.

Before reviewing the results from Ref, 2 for a braced beam loaded
by uniform moment, Eq. (2.2) will be rewritten in another form. The
terms which represent the weak axis flexural buckling load, Pcrv are

collected as

ﬂzEI

Yy
P = (2-3)
er (aL)2

The center of rotation (2,5), bgr of the buckled cross-section, as shown

in Fig. 2.2, is defined as

d aL
S N e
2 Y
(2.4)
2
T~ EC
where Yy = C—~———E)1/2

GJ
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The center of rotation, by» Will always be below the tension flange but
will move upwards toward it ify increases or al decreases. For most
economy sections with al/d = 10.0, b, ranges from 1.2 (d/2) to 1.4
(d/2). The equation for the critical moment, Eq. (2.2), now reduces to
the multiplication of a force times the distance from the shear center

to the center of rotation,

Mor = Per bo (2.5)
1
A brace with stiffness, B, located at the compression flange at

midspan of a beam under uniform moment as shown in Fig. 2.3 will

increase the critical moment of the beam, Mgp» above that of the
unbraced case. An expression for the relationship between Mcr and brace

stiffness in this case is derived by Mutton and Trahair [2] and given

here in a different form as:

APcr/L / (1 + b/bo)

B = —— S (2.6)
(I-tan ( — |—SIy/ (- / Ty
2 P 2 P
el el

where P,y 15 calculated from Eq. (2.3) using values for a between 1.0
and 0.5, P,q is the first mode critical load using a = 1.0, and b is the
height of the brace attachment as shown in Fig. 2.2, The critical
moment for this brace stiffness is derived from Egs. (2.4) and (2.5) and

is shown graphically in Fig. 2.4, If the brace is attached at a
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location below the top flange, the translational brace stiffness may
have to be augmented by a rotational brace stiffness to enable this
moment to be achieved. These requirements are discussed in Ref. 2, and
are not within the scope of this study.

The ideal brace stiffness for a beam braced at the compre551on

flange, based on a = 0.3, is_

167281 /13 4P /L
Bideal = ~ I = (2.7)
(1 +b/b) (1 +D/b)

From this equation, it is seen that the ideal brace stiffness for a beam

braced at the compression flange 1s smaller than that obtained for a

column by Eg. (1.2) by the factor (1 + b/bgy). The magnitude of this

Sopengme

factor is greater than 1.0 but not more than 2.0, when the brace is at
the compression flange, and is between 1,70 and 1.85 for most economy

sections with aL/d = 10.0. The similarity between the solutions for

braced columns and beams is useful in establishing the validity of an

approx1mate model of braced beam behavior based on column behav1or.

2.2 Previous Approaches for Beam Bracing

The 2 percent "rule of thumb" used for the bracing of columns was
extended by the SSRC Guide [1] to the bracing of the compression region
of beams. The strength of a lateral brace is said to be sufficient if
it is at least 2 percent of the force in this region. If so designed,

Zuk [5] contends that the stiffness might also be adequate. Other
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models, however, are available [5, 6] which can be used to evaluate the
stiffness and strength requirements more precisely.

The "beam flange as a column" analogy is presented by Winter in
Ref. 6. In this model, the compression region of a beam, such as that
shown in Fig. 2.3, is isolated and treated as a column as shown in Fig.
2.5. The flange of this region provides the lateral bending resistance
since the web contributes little to the weak axis moment of inertisa.
The techniques discussed in Chapter I for the bracing of columns can be
used to calculate the ideal stiffness. The question in the actual use of
this approach is, however, what force P in Eq. (1.3) should be applied
to the compression region or "column", Winter [6] uses the total com-
pression force above the neutral axis of the beam. Another supposition
might be to divide the moment by the depth of the beam to get the force.
The similarities between Eq. (1.1) for braced columns and Eq. (2.6) for
braced beams indicate that the proper force, P, to use in Egq. (1.3) is
Por/(1 + b/by). Using this value, the brace stiffness for a beam is

seen to be that of a column divided by the quantity (1 + b/by) Which can

be characterized as a correction factor which accounts for the enhanced
effectiveness of a brace when it is above the shear center toward the
compression flange. When evaluating the ideal stiffness for beams, the
correction factor may be conservatively assumed equal to 1.0 which
results in overestimating the required stiffness by a factor of not more
than two. However, the calculation of b, is necessary to get Mgps @S in

Eq. (2.5), so there is no extra calculation effort required to calculate

(1 + b/bg). A better understanding of the evaluation of Mg, for braced
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beams results from the use of Eq. (2.5) rather than the conventional

form in Eq. (2.2).

2.3 Forces in Beam Bracing

Brace forces can be computed if initial imperfections are
included in a model. Zuk [5] obtained approximate solutions to the
differential equations for an imperfect beam but the results have not
been reduced to a form which can permit the behavior to be clearly
defined. The initial imperfections may be composed of both lateral
displacement and an initial twist components. Each of these may be
composed of several component mode shapes. The study of braced columns

indicates that the first mode component of the initial shape will have

the greatest influence on the deflections of the brace point. It may be

assumed that the compression flange of a beam will behave similarly.
Winter [6] models a beam flange, braced with one or more elastic
restraints, as a series of 1inks connected by hinges at the restraint
locations. Concentrating on the most simple case of one restraint at
midspan, the flange is assumed to buckle into the seccnd mode and a
hinge is placed at midspan, as shown in Fig. 2.6. A first mode initial
imperfection shape is simulated by displacing the hinge, 1laterally, a
distance,Ao, at the brace point. This representation is reasonable when
the load is near the second mode load, Pepr which is calculated using a
= 0.5 in Eq. (2.3). At this load the brace will deflect an additional
distance, A, , to maintain equilibrium. The moment equilibrium relation

is
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BL
P (AA + AO) = —— A (2.8)

4 A
Rearranging this equation and recognizing that Bjqea1 = 4 Pgp/L from Eq.

(1.2), the additional deflection required at the brace point is

B
A = Ao /] (—— - 1) (2.9)

A
Bideal

When the brace stiffness is equal to the ideal stiffness, the deflection

s

at the brace is infinite. The brace deflection can be limited to a

finite magnitude by utilizing a brace with a stiffness greater than the

ideal value. For example, the limiting deflection will be equal to the
I —
magnitude of the initial imperfection if the brace is twice as stiff as

the ideal stiffness. The required strength of the brace is given by

Pe2
= 4—= (&, *+ b, (2.10)

L

BA

Fbrace = A

A brace stiffness greater than the ideal brace stiffness is needed to

1imit the force in the brace. As the brace stiffness increases toward

an infinite value, the additional deflection becomes zero. The brace

force will not be less than

e?
= — 2. 11
Frigid brace 4 Ao ( )
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When using this column model for a beam braced at the top flange at
midspan, it is appropriate to divide the brace stiffness and force by

the quantity, (1 + b/bo). If the validity of this model for beams was

established, say, through a testing program, then more complex bracing

conditions, such as a continuous elastic restraint, could be analyzed in

a similar manner as is done by Winter [6].

In the next chapter, a testing program is described in which a

steel beam is loaded by uniform moment and braced at the compression

flange at midspan. The objectives of this testing program are to study

the effects of brace stiffness and initial imperfections on the lateral=-

torsional buckling behavior and brace forces.




CHAPTER IT1I
TEST PROGRAM

Thirty tests were performed on a single specimen to obtain data
on bracing requirements for steel wide-flange beams. The first ten
tests were considered pilot tests to evaluate the performance of the
experimental setup. The last twenty tests, Tests 11 through 30, are
reported here. Of these twenty tests, nineteen, or Tests 11 through 29,

were conducted in the elastic range and the last test, Test 30, was

tested to failure.

3.1 Description of the Experiments

The goal of this study is to provide experimental data on the
lateral-torsional buckling of braced beams. Of particular interest was
the force in the brace, the magnitude of the brace stiffness necessary
to develop a particular critical moment, and the effect of initial
imperfections on these parameters. To accomplish this goal, a simply
supported wide-flange beam was braced at midspan at the compression
flange and loaded with uniform moment. A single W12x16 specimen with
ASTM A572-Grade 50 material was used for the 20 tests reported here.
The W12x16 shape is relatively slender and is representative of typical
beams used in building construction. The section properties were
measured and are tabulated along with the published theoretical values
in Fig. 3.1. The static yield stress obtained by ASTM tension coupon

tests was 55 ksi and the elastic modulus was assumed to be 29,000 ksi,
28
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SUMMARY AND COMPARISON TO THEORETICAL VALUES

Property
A .2)
I .4)
S .3)
I .4)
S .3)

Actual Theoretical 7 Difference
4.78 4.71 +1.5
100.2C 103.00 -2.7
16.80 17.10 -1.8
2.71 2.82 -3.9
1.35 1.41 -4.3
ey

Fig. 3.1 Section properties.
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The two important variables of this study were the brace stiff-

ness and the magnitude of the initial imperfections. Theoretically, the
ideal brace stiffness was expected to be sufficient to cause the beam to
buckle into the second mode shape. Therefore, stiffnesses above and
below the theoretical ideal stiffness were used so that its value could
be bracketed experimentally. Initial imperfections were expected to
influence the force in the brace. Forced imperfections or misalignments
were imposed on the test specimen since these occur in actual structures
and the need for many specimens each having its own unforced or natural
imperfection was avoided. Magnitudes of forced imperfections equal to
1/2000 and 1/1000 of the test span were used. Tests with no forced
imperfections were also performed so the effect of the natural or geo-

metric imperfections could be observed.

3.2 Test Setup

The test setup was designed to approximate the behavior of the
ideal model shown in Fig., 2.3. The end moments must be applied by
practical means, however, the points of loading usually produce
restraints that inhibit buckling deflections. To attenuate the effect
of these restraints, the load and support points were located as far as
possible from the region of the beam where the buckling originates. The
loads, pts. 4, and the supports, pts. B, were symmetrically placed at
the ends of the specimen, as shown in Fig. 3.2. The beam was simply-
supported in the plane of the loads, which were located 5 ft from the
supports and produced a uniform moment region between the supports.

Rigid out-of-plane supports, denoted by the X's in Fig. 3.2, were placed
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at the load and support points to prevent lateral translation of the
specimen. An elastic brace was placed at the midspan of the specimen,
pt. D, at the bottom flange which was in compression. At pts. C, out-
of-plane restraints were placed to further isolate the center section of
the beam from the inplane loading and supports. Buckling deflections
were observed in the 18 ft center region of the beam defined as the test
span. The adjacent 9 ft panel and the 5 ft panel are defined as the
side spans.

The test span differed from the ideal beam model due to the
continuity of the beam with the adjacent sidespans. To illustrate this
difference, a flexible brace is placed at the midspan of the test span,
as shown in Fig. 3.3(a). Significant weak axis bending or warping
restraint is expected when the compression flange of the beam buckles
into the first mode shape since the unbraced length of the test span is
twice that of the sidespans. When the brace at the midspan is stiff, as
shown in Fig. 3.3(b), the flange will buckle into the second mode. The
test span and adjacent sidespans are close to buckling simultaneously
since their unbraced lengths are approximately the same. Therefore, for
this choice of dimensions, the warping restraint at pt. C in Fig. 3.2 is
maximized when the beam buckles into the first mode shape and minimized
when the beam buckles into the second mode shape.

Figure 3.4 shows the test specimen in the test frame. The frame
was composed of two parallel W27's that were connected, intermittently,
by cross-members. The frame was clamped to tie-down beams that were

anchored to a reaction slab. Figure 3.5 shows the test frame and the
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specimen during testing. The inplane loads were applied by 20-ton
hydraulic cylinders acting in tension at pts. A as shown in Fig. 3.6.
The rams were connected to a transfer beam spanning between the frame
girders at the base of the frame where a clevice and pin were used to
provide a pinned end in the plane of the frame. The tension from the
ram was applied to the specimen through the bracket arrangement shown in
Fig. 3.7. Two threaded rods on each side of the specimen passed through
three plates which served to keep the specimen in proper alignment, to
prevent crippling of the specimen, and to provide adjustment at the
pinned connection to the cylinder rod end of the ram. The hydraulic
pressure to the rams at each end of the test frame was supplied by a
hand pump and common pressure and return hydraulic hoses. The hydraulic
system had no significant leakage and was able to hold loads at any
given level of pressure.

Roller bearings, shown in Fig. 3.8, were used to provide pinned
supports at pts. B. These bearings were able to accommodate the inplane
rotation of the specimen and were unable to transmit any moment or
horizontal shear. Web crippling was prevented by a bearing plate
between the flange and the rollers. The rollers were supported by a
compression load cell and a transfer beam spanning between the frame
girders.

Slotted plates, as shown in Fig. 3.9, were used to prevent out-
of-plane translation of the specimen at pts. A, B, and C, shown in Fig.

3.2. Extension plates were bolted to the inside surface of these plates



Fig. 3.6 End loads.
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Fig. 3.9 Out-of-plane supports.
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to provide lateral support for both flanges of the specimen and to

accommodate the vertical deflection of the beam.

3.3 Brace Spring

A low brace stiffness was theoretically sufficient to buckle the
test span into the second mode shape. A brace system utilizing flexure
was chosen to supply the necessary flexibility. The overhanging canti-
lever arrangement, shown in Fig. 3.10(a), was mounted on a vertical
track in order to compensate for the inplane deflection of the test
specimen shown in the right side of the figure. A connecting rod with
pinned ends was placed between the brace spring and the compression
flange of thé specimen to prevent any torque or a vertical component of
force from being transmitted into the flange of the test specimen. A
load cell was used at the center of this rod to measure the brace force.
The brace mechanism involved flexing of the brace spring as buckling
deflections occurred in the specimen, as shown in Fig. 3.10(b). Adjust-
ment of the lower support of the brace spring enabled the stiffness to
be varied. By reducing the length "2", it was possible to decrease the
brace stiffness.

The brace spring, shown in detail in Figs. 3.11(a) and 3.11(b),
consisted of two 3/8 x 2-1/2 in. plates which were 2 ft long and had a
yield stress of 100 ksi. The plates were connected by pairs of screws
along the length of the brace bar as shown in Figs. 3.11(a) and (e).
Although the screws were tight, they flexed elastically which permitted
the plates to move relative to each other. This action was acceptable

when the brace stiffness was low and the brace displacement, uq, in
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Fig. 3.10(b), was large; however, problems with reproducability were
encountered when the brace was stiff and the brace displacements were
small. The brace was subsequently improved by tack welding the two
plates together for the tests involving high brace stiffnesses. In the
future, a single plate is recommended for similar applications. The
connecting rod was attached to the brace spring with a spherical bearing
as shown in the assembly view in Fig. 3.11(d). This bearing was neces-
sary to permit the vertical or horizontal inclination of the rod which
was expected to occur during testing. A similar bearing was used at the
other end of the rod where the brace was clamped to the flange at the
specimen.

Because the test specimen deflected vertically during testing, it
was necessary to adjust the connecting rod between the brace spring and
the specimen to a level position so that the brace would develop the
proper stiffness. A vertical track was devised to act as a support for
the brace spring which allowed vertical movement of the entire assembly.
The brace spring was mounted on a sliding tee-plate, as shown in Fig.
3.12, which had slotted holes so the upper and lower supports of the
brace could be repositioned when a different brace stiffness was needed.
Attached to this tee-plate was a pair of runner angles on each side
which kept the tee-plate positioned between two vertical guide tubes. A
frame on each side held each guide tube in place. These frames were
interconnected so they worked together. The brace-spring frame was
attached to the test frame. Using 0.001 in. dial gages, no perceptable

deflections were observed at any point in this frame when force was
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placed in the brace spring. The brace spring and the brace spring frame
are shown in Figs. 3.13 and 3.14.

The stiffness of the brace was determined in two ways. Prior to
a series of tests where a specific brace stiffness was to be used, the
brace was disconnected from the test specimen and connected to an aux-
iliary ram. The force imposed in the brace was measured with a load
cell in the connecting rod and the deflections, u, and up shown in Fig.
3.10(b), were recorded. The flexibility of the brace bar and load cell
were determined and the inverse of the sum of these values was the
stiffness of the brace at its connection to the flange of the specimen.
The flexibility of the connecting screws, mentioned previously, was
included in the flexibility of the brace bar and this flexibility was
seen to be linearly elastic. During testing, the brace force was
recorded as well as the deflection, uq,» at the brace spring. The stiff-
ness of the brace at the brace spring was obtained by measuring the
slope of the brace force-u; plot shown in Fig. 3.15. The inverse of
this stiffness, or the flexibility, was added to the flexibility of the
load cell and the connecting rod which was determined during the pre-
test calibration to get the flexibility of the brace at the flange of

the specimen during a test.

3.4 Forced Initial Imperfections

Forced imperfections or misalignments were imposed on the test
specimen such that the section was displaced laterally but not twisted.
The device producing the imperfection, shown in Fig. 3.16, prevented the

beam from returning to its natural position but did not restrain motion
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away from it. The device, termed the restraint angle, consisted of a
series of angles welded together and was clamped to one of the frame
girders. Threaded rods were passed through slots cut in the restraint
angle, above and below the test specimen, and connected to a tube on the
other side of the beam. Nuts were used to push the tube against the
specimen in the direction of the restraint angle. The magnitude of the
imperfection was set by temporarily placing 0.001 in. dial gages on the
restraint angle to measure the initial deflection of the beam toward it.
The specimen could be plumbed with a vertically held level by turning
the nuts on the threaded rods. There was enough clearance between the
upper and lower threaded rods to permit the vertical deflection of the
beam throughout testing.

A pair of restraint angles were required to produce the various
initial imperfection shapes. The restraint angles as shown in Fig,
3.17(a), were located at third points of the test span and oriented to
produce the first mode shape. The second mode shape was formed by
reversing one of the restraint angles as shown in Fig. 3.17(b). In both
configurations, care was taken to tighten the nuts on the connecting rod
from the brace spring to the specimen after all imperfections were
imposed so that the initial force in the brace was zero.

The forcing of a misalignment into a beam is interesting since it
occurs in actual structures and its effect on the brace force has not
been determined experimentally. The behavior of a beam with a forced
imperfection will not be the same as a beam with a natural or unforced

imperfection of the same magnitude. When the imperfection is forced,
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the tension flange 1s not allowed to straighten out as the beam moment
increases as it would for the case of a natural imperfection. It may be
speculated that the forcing of an imperfection alters the center of
rotation from that of a beam with natural imperfections but this view

has not been substantiated with a mathematical argument.

3.5 Load and Deflection Measurements

Inplane loads were measured at the hydraulic cylinders at pts. 4,
in Fig. 3.2, and at the load cells at pts. B. Pressure in the common
hydraulic lines to the rams was sampled with a pressure transducer which
was calibrated in a dead weight pressure tester. The ram was calibrated
in a testing machine to determine its force-pressure relationship. The
load cells were also calibrated.

Inplane deflections, at points B and D in Fig. 3.2, were
observed using 0.001 in. dial gages. A datum was established as the
line between the deflected positions of the supports at pts. B. The
deflection at the midspan, pt. D, was added to the deflection of the
datum line at this point, or average of the support readings, to get the
midspan deflection of the beam relative to the supports.

The buckling or out-of-plane deflections were those of the brace
point lateral displacement, and the lateral deflection and twist of the
quarterpoint which is halfway between pts. C and D in Fig. 3.2, A 0.001
in. dial gage was used to measure the brace point displacement as dis-
cussed previously. The quarterpoint twist was measured using an
inclinometer, as shown in Fig. 3.18, which was attached to the top

flange of the specimen.
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Fig. 3.18 1Inclinometer.
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The quarterpoint was chosen for observation since the buckling
deflections would be maximum at this location when the test span is
buckled into the second mode shape. A biaxial tracking device, Optron,
was used to follow the deflection of this point optically. The Optron,
shown in Fig. 3.19, was able to detect the changing position of a target
attached to the test specimen. The target was mounted on the bottom
flange of the specimen and the horizontal motion was tracked. The
device was calibrated for the specific distance to the target and with

proper lighting resolved 0.005 in. displacements.



CHAPTER Iv

TEST PROCEDURE AND RESULTS

4,1 Test Procedure

Initially, the beam was bent undef its self-weight in a direction
opposite to that caused by the applied loading. Loading was performed
by manually pumping 0il to the hydraulic cylinders at each end of the
test frame which were connected by a common line. A small amount of
pressure was needed to overcome the moment due to self-weight and the
midspan moment was then essentially zero. By increasing the hydraulic
pressure, the midspan of the test beam continued to deflect vertically,
as shown in Fig. 3.5, and the bottom flange was put into compression.
The tendency of this flange to buckle laterally was restrained at the
midspan by the bracing system. The connecting rod between the brace
spring and the test beam was manually leveled by moving the sliding tee-
plate for the brace spring, shown in Fig. 3.12, upward between the guide
tubes of the brace spring frame. This procedure was done intermittently
during loading and at the end of a particular load stage where loading
Wwas stopped and readings were taken. At the end of each increment of
loading, frictions between the test specimen and the test frame were
minimized at the lateral restraint points, A, B, and C, by vibrating the
slotted bracing plates. Load and deflection readings were then taken.
The load and deflection readings were observed to change slightly in a
direction which was indicative of a reduction of frictional restraint.

50
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Load was applied in 2000 1lb increments until the buckling deflec-
tions started to increase rapidly. At this point, 500 to 1000 1b load
stages were applied. Loading was stopped when the calculated value of
the inplane and lateral bending stress reached the yield stress at the
tips of the compression flange so that the specimen could be reused.
The load vs. quarterpoint lateral deflection was plotted with an X-Y
recorder during testing. The test specimen was at the limit of its load
capacity when the slope of this plot was horizontal. The flange tip
yielding interaction line was superimposed on this plot and the loading
was terminated when the load vs. lateral deflection plot reached this
line.

Other readings taken at each load stage were: inplane deflection
at the support points and the midspan; the quarterpoint twist; and the
brace lateral deflection and brace force. The inplane load- deflection
plot was used to check for elastic behavior and frictional restraint by
observing the shape of the plot. The brace force-deflection plot was
also used to evaluate the reliability of the data and check for non-
linearity or slippage which could occur in the brace or the connecting
equipment. The buckling deflections, which were the quarterpoint lat-
eral deflection and twist, and the brace point lateral deflection were
used in plots, such as the Southwell plot, to extrapolate the critical
moment for the test. These plots were also very helpful in detecting
unwanted restraints to these buckling deflections. These plotting

methods are discussed in more detail in Chapter V.
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4,2 Determination of Midspan Moment

Forces were measured at the hydraulic cylinders and load cells
which constitute the load and support points of the test beam, respec-
tively. The measured hydraulic cylinder force is plotted along with the
average force in the load cells as a function of inplane deflection as
shown in Fig. 4.1. Superimposed on this figure is the plot of the
theoretical load-deflection relationship which was calculated from the
measured properties of the section and is shown as a dotted line. The
variation of force with inplane deflection was expected to be linear
when the load was in the elastic range. At any given load stage, the
force in the hydraulic cylinders was between 3 and 5 percent greater
than the average of the load cell forces. The two load cell forces
differed by no more than 4% and often this difference was less than 2%.
The average load cell force shows a much closer correlation to the
values calculated from the measured section properties than does the
hydraulic cylinder force. The difference between the load cell and
hydraulic cylinder forces can be attributed to internal friction in the
hydraulic cylinder. Therefore, the average load cell force was con-
sidered to be more representative of the actual load applied to the
beam. The moment was calculated as the average load cell force times
the distance between the load cell and the hydraulic cylinder at each

end of the test frame.

4.3 Test Results

Thirty tests were performed of which the first ten were pilot

tests and the last twenty, Tests 11 through 30, are reported here. Of
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the last twenty tests, all were conducted in the elastic range except
the last test, Test 30, which was taken to failure. The variables in
the testing program were the stiffness of the brace and the magnitude
and type of initial imperfection imposed on the specimen. The primary
observations during testing were the force in the brace and the moment-
displacement behavior at the brace point and quarterpoint. A theoret-
ical ideal brace stiffness, calculated to be 0.70 kips per linear inch
(kl1i) by using Eq. (2.7), was expected to be sufficient to force the
test beam to buckle into the second mode shape. To establish the
experimental value of the ideal brace stiffness, the stiffness of the
brace used in Tests 11 through 21 was between 0 and 70 percent of the
theoretical ideal value and the brace stiffness used in Tests 22 through
29 was between 1.3 and 5 times higher. In Test 30, the brace stiffness
used was essentially that of a rigid brace since the stiffness was 26
times the theoretical value of the ideal brace stiffness.

In the first three columns of Table 4.1, the magnitudes of the
brace stiffness and forced initial imperfection used for each test are
presented. A test series consisted of group of tests having approxi-
mately the same brace stiffness and varying magnitudes of forced initial
imperfections of 0, L/2000, and L/1000 of the 18 ft test span, or 0 in,,
0.108 in., and 0.216 in, respectively. Tests 11 and 12 were a test
series having no brace attached to the test specimen. Tests 13 through
18 had a brace stiffness of approximately O.4 kli and were grouped into
three pairs of tests each having a successively larger magnitude of

initial imperfection. In Tests 19 through 21, a brace stiffness of
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TABLE 4.1 BRACE FORCES

Forced Highest Max. Compr . % of
Brace Initial Moment Brace Region Compr.

Test Stiffness Imperf. Reached Force Force Force

No. (kli) (in.) (kips) (1bs) (k) (%)

11 0.0 0.0 301.82 — 30 —

12 0.0 0.205 280.5 —_— 28 _—
13 0.350 0.000 426,2 116 43 0.27
14 0.400 0.000 42L4.8 128 43 0.30
15 0.380 0.105 381.7 123 38 0.32
16 0.380 0.105 401.8 146 40 0.37
17 0.390 0.216 384.1 139 39 0.36
18 0.420 0.195 386.6 145 39 0.37
19 0.530 0.000 439.8 94 4y 0.21
20 0.510 0.113 409.4 123 41 0.30
21 0.490 0.214 374.5 123 38 0.32
22 1.250 0.000 492.1 88 49 0.18
23 1.90 0.000 531.5 89 53 0.17
24 1.60 0.000 545.8 32 55 0.06
25 1.13 0.220 I~ 523.1 72 53 0.14
26 1.65 0.220 £>~<7 530.0 T7 53 0.15
27 0.880 0.220 L/~ 555.7 26 56 0.05
28 2.9 0.220 L= 581.3 L6 58 0.08
29 3.2 0.218 o= 564.1 L6 57 0.08
30 18.% 0.000 610.5 97 61 0.16

1

Shape is N

unless otherwise noted.

2 Includes 25.1 in.-k gravity moment.

My= 8ho m-x
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approximately 0.51 kli was used. In Tests 22 through 30, it became
obvious that the test setup would not perform satisfactorily unless the
magnitude of the forced initial imperfection was either zero or L/1000,
because otherwise the test specimen would still be in contact with at
least one of the restraint angles when other regions of the specimen
were in danger of yielding due to the combination of inplane and out~of-
plane bending stresses. Therefore, in Tests 22 to 30, the brace stiff-
ness was varied but the magnitude and shape of the initial imperfection
were chosen such that the specimen behaved properly.

As theoretically predicted, the test specimen buckled into the
first mode shape when the brace stiffness was less than the ideal brace
stiffness of 0.7 kli as was the case in Tests 11 through 21 and it
buckled into the second mode shape when the brace stiffness was larger
than this value as in Tests 22 through 30. The experimental value of
the ideal brace stiffness was observed to be between the value of 0.53
kli and 0.88 k1i used in Tests 19 and 27, respectively. In Table 4.1,
the maximum brace force corresponding to the largest moment attained
during each test is tabulated in column 5. The brace force is also
given as a percentage of the force in the compression region of the
specimen which is obtained by integrating the stresses over the compres-
sion area at the maxmimum moment. The largest brace forces were
observed during the first mode tests where the forces were between 0.25
percent and 0.40 percent of the compression region force when the tests
Wwere stopped. If these tests were taken to failure, the brace force

would have been expected to inecrease without bound. 1In the second mode
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tests, Tests 22 to 30, the brace force reached a l1imiting value since
the brace point developed into an inflection point. Of the tests which
buckled into the second mode shape, the largest brace force was observed
in Test 30 which was taken to failure. In this test, the brace force
was 97 1bs, or 0.16 percent of the force in the compression region at
the maximum moment.

In the following paragraphs, several representative tests are
described in greater detail with emphasis on the moment-displacement
behavior of the test specimen. Tests 11 and 12 were conducted with no
brace attached at the midspan of the test span. Test 11 had no forced
initial imperfection whereas the beam in Test 12 was displaced laterally
a distance of L/1000, or 0.216 in., at the midspan of the test span as
shown in Fig. 3.17(a). The lateral deflection at the quarter point was
plotted as a function of inplane moment for both Tests 11 and 12 as
shown in Fig. 4.2(a). Both curves have decreasing slopes with increas-
ing moment which is characteristic of buckling deflections. The curve
for Test 12 was flatter and did not have increasing deflections until

the moment was about 125 in.-k. The compre351on flange of the beam d1d

not deflect laterally untll the out-of—plane P-delta moment was. greater

[ ———

than the re51st1ng out—of—plane moment whlch resulted from forecing the

1n1t1al 1mperfect10n 1nto the test span. Once the compression flange

pulled away from the restraint angle, shown in Fig. 3.16, the deflection
at a given load was greater than that for Test 11 where no imperfection
Wwas imposed. A plot of moment vs. the twist at the quarter point for

both tests is shown in Fig. U4.2(b) and these displacements were similar
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to those in Fig. 4.2(a). The maximum twist recorded was less than two
degrees while the lateral deflection was approximately 3/8 in.

In Tests 15 and 16, the stiffness of the brace at its connection
to the test specimen was 0.38 kli or 55% of the ideal stiffness. The
magnitude of the forced initial imperfection used was 0.105 in. or
approximately L/2000. The test span deflected gradually into the first
mode shape with increasing moment. A plot of the applied moment vs.
brace deflection is shown in Fig. 4.3(a) and a plot of moment vs.
deflection at the quarterpoint is shown in Fig. 4.3(b). The data points
for Test 15 are shown in these plots with a circle, those for Test 16
are shown with a square, and the connecting curves are cmitted for
clarity. The data points for both tests follow almost exactly the same
path for both types of deflection and demonstrate the reproducibility of
these tests. In both cases, the momernts are observed to be greater than
those of the unbraced case for a given value of lateral deflection.

The brace stiffness in Test 25 was 1.13 kli, or 1.6 times the
ideal stiffness, and this stiffness was sufficient to force the test
span to buckle into the second mode shape. The deflection at the brace
point was limited to approximately 1/16 in. and the brace force was 72
lbs when the test was stopped due to excessive deflections at the quar-
terpoint. In Test 29, the brace stiffness was 3.2 kli, or 4.6 times the
ideal stiffness. The span buckled into the second mode and when the
test was stopped due to excessive quarterpoint deflections, the brace
force was 46 1bs and the brace deflection was approximately 0.015 in.

The effect of increasing the brace stiffness on the magnitude of the
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brace deflection and the moments is shown in Fig. 4.4. The brace
deflection for Test 15, with the 0.38 kl1i brace stiffness, increased
much more rapidly than those for Tests 25 and 29 which had brace stiff-
nesses that were able to force the specimen to buckle into the second
mode. The brace deflections for Tests 25 and 29 appear to have
increased to a finite limit rather than increasing without bound as in
Test 15. The deflections at the quarterpoint, shown in Fig. 4.5,
increase toward an infinite value for all tests. Also shown in Figure
4,5 is the plot for the unbraced case, Test 11. The increase in attain-
able moment for an increasing brace stiffness is clearly seen. The
moments observed in Test 29, with the 3.2 kli brace, were almost double
that of the unbraced span in Test 11.

The beam was tested to failure in Test 30 where the brace stiff-
ness was approximately 18 kli, or 26 times the ideal stiffness. No
forced imperfections were imposed on the specimen. The quarterpoint
deflection of the compression flange, shown in Fig. 4.6, exceeded 0.75
in. when the section suddenly yielded at a moment of 611 in.-k. There
was no appreciable increase in moment during the last 0.5 in. of this
deflection and the force in the brace was 97 lbs.

The critical moment, defined as the moment when some or all of
the test span has deflected an infinite distance, could not be observed
directly from the moment-deflection plots. At high moments, however,
the deflections which were increasing toward an infinite value could be
mathematically extrapolated to the value of moment at which these

deflections become infinite. This critical moment becomes the reference
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point to compare tests which were stopped prior to failure of the speci-
men to allow further testing in the elastic range with the same speci-
men. The critical moments are obtained and comparisons with analytical

predictions are included in Chapter V.



CHAPTER v

ANALYSIS OF TEST RESULTS

In this chapter the bifurcation moments of the test specimen with
various brace stiffnesses are calculated using differential equations
and finite element solutions. The analytical results are compared to
the critical moments extrapolated from the test data. A plot of moment
vs. brace stiffness is also presented and the observed brace forces are

compared to analytical estimates.

5.1. Calculation of Bifurcation Moment

The critical moment for the beam can be obtained by treating the
beam as a column to get an effective length factor and using Egs. (2.3),
(2.4), and (2.5). The critical moments were calculated using an align-
ment chart for a braced frame and assuming buckled shapes as shown in
Fig. 3.3. The end restraint factors were modified for the presence of
compression stress in the side spans and for deviations from the assump-
tions used in developing the charts. The calculated critical moments
were 341 in.=k for the unbraced case and 594 in.-k for the second mode
as shown in Fig. 3.3(b). These values include the 25 in.-k to overcome
the gravity load moment in the specimen and correspond to values for a,
in Eq. (2.2), of 0.66 and 0.47, respectively. Without the warping
restraint produced by the continuity, these values of a would have been
1.0 and 0.5.

66
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A finite element program, which could model the interaction
between the buckling of the testspan and sidespans was used to check the
results above and to calculate the critical moment at a particular brace
stiffness. The program, BASP [7], which stands for Buckling Analysis of
Stiffened Plate structures, was used to model the W12x16. A discussion
of this program is given in Appendix C. Using the measured section
properties, the first and second mode bifurcation moments, including the
25 in.-k gravity moment, are 339 and 598 in.-k. These values are within
1% of those calculated using Eq. (2.2). The results for brace stiff-
nesses between zero and ideal are given in section 5.4 where they are

compared to the critical moments from the test results.

5.2 Techniques for Determining Critical Moments

Since the same beam was to be used for all tests, the beam load
could not be taken to the critical value because second order stresses
would cause yielding. Therefore, plotting techniques developed by
Southwell, Lundquist and Meck, using the load-displacement data, were
used to estimate the experimental elastic buckling load.

The deflections of an imperfect member increase without bound as
the bifurcation load of an otherwise perfect member is approached.
These deflections increase rapidly with increasing load or moment and
are related, as is done in Ref. 6 by using Eq. (1.4), to the magnitude
of the critical moment and the magnitude of the component of the initial
shape which is similar to that of the bifurcation buckling mode shape.

For example, if the imperfection shape is a half sine wave with a
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midspan amplitude of AO, the additional deflection,AA s due to the

applied load is given by Eq. (1.4). This equation can be rewritten as

(5.1)

and when plotted as in Fig. 5.1, is the equation of the Southwell Plot
[4]. For data points in the elastic range, the slope of the line of
best fit through these points is the inverse of the critical load. The
negative horizontal intercept is the magnitude of the initial imperfec-
tion. These two parameters are used in Eq. (1.4) to describe a hyper-
bola of best fit which passes through the origin of the load-deflection
plot. In beam buckling tests, moment is used as the measure of load in
Eqs. (1.4) and (5.1) since it is proportional to the inplane stress in
the compression flange.

Lundquist [8] generalized the mathematics of a hyperbolic curve
fit to pass the curve through a data boint, called the reference point,
which is held in higher confidence than the origin due to initial non-
buckling related movements occurring when the load is first applied.

The equation of the Lundquist plot is

A A=A .
A R__AR ° (5.2)

where Pg and ARare the load and deflection of the reference data point.
The inverse of the slope of the Lundquist plot, shown in Fig. 5.2, is

P - Pgoor the difference between the critical load and the reference

cr
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load. The negative horizontal intercept is the sum of the initial
imperfection and the reference deflection. A Southwell plot is produced
when Pp and ARare equal to zero.

Meck [9] developed a plotting method specifically for beams. In
the solution of the two simultaneous equations involving the lateral
displacement and twist, one variable is usually solved in terms of the
other. Plotting methods based on the resulting equation are complex and
involve quadratic terms [3]. The slope of this equation does not become
sufficiently linear until high moments are attained which limits their
usefulness for plotting. Meck avoided this difficulty by not making the
final substitution for an equation in one variable. Two equations are
used which involve linear relations between functions of the lateral
deflection and twist. A plot of the ratioc of lateral deflection to
moment as a function of twist is shown in Fig. 5.3(a) and a plot of the
ratio of twist to moment as a function of lateral deflection is shown in
Fig. 5.3(b). The slopes of the lines of best fit through the data
points for these plots are defined as cand B8, respectively. The criti-

cal moment is given by

MC]" = (QB)1/2 (5.3)

The initial lateral twist and deflection are found from the negative
horizontal intercepts of Fig. 5.3(a) and 5.3(b), respectively. These

plots are analogous to "Southwell" plots for beams [9].
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5.3 Critical Moments from the Tests

Predictions of the critical moment for each test were made by
applying the plotting techniques to the quarterpoint lateral deflection
and twist and the brace point deflection. Figure 5.4 shows the South-
well and Lundquist plots for the quarterpoint twist in Test 11. The
lower curve is the Southwell plot and the curves above it are Lundquist
plots with the reference point taken at successively higher load stages.
The curves having reference points at low load stages are more linear
than those with reference points at high load stages. This occurs
because the curve fitting process becomes more ill-conditioned, or
susceptible to error, when the reference point is taken on the flatter
region of the load-deflection curve. Focusing on the lower three
curves, (a) the Southwell plot, (b) and (e¢) the Lundquist plots with
reference points at the second and third load stages, the criticeal
moments for thee plots are 352, 351, and 350 in.~k, respectively. Meck
plots for Test 11 are shown in Figs., 5.5 and 5.6 and the critical moment
predicted by these plots is 350 in.-kK. In this case, the critical
moment for all three plotting techniques is about the same. The South-
well and Lundquist plots for the quarterpoint lateral deflection for
this test also give similar results.

A complete summary of plotting results for all the tests is
included in Appendix B. The results of the Meck and Southwell plots are
extracted from this summary and given in Table 5.1. In this table, the
test parameters are tabulated in the first three columns and the bifur-

cation moment predicted by the finite element program, BASP, is shown in



TEST NG, 11 - NO BRACING ~ NATURAL IMPERFECTIONS
QUARTER POINT LATERAL DEFLECTION - 1IN,

THE BAALE STIFFNEYS 19 Q. 800
THE IRITIAL INPEAFECTION 1) a.aaq
e
-
o]
8-10
a
°
“1
8-10

4.00

'

.20
i

1
~

REF)} 7/ (M - M REF) = 10
.2. 40

[ 0.10 0.20 6.30 0. 40 0.50

Fig. 5.4 Southwell (a) and Lundquist (b,c) plots for Test 11.

73



TEST NO. 11 - NO BRAACING - NRTURAL IMPERFECTIONS
MECK PLOT OF QUARTER POINT OISPLACEMENTS

THE BRACE STIFFNESS I3: 0. 000
THE INITIAL INPERFECTION 1. 8. 0g0

e

i

LATERAL DEFL /7 M X 1000.

T

4.00 ®.00 12.00 18.00 20, 00 2¢.00 28.00
QUARTER POINT TWIST X 1000 - AAD.

Fig. 5.5 Meck plot for Test 1l--u/M vs. 6.

%2.00

74



84.00

$8.00

A

48.00

A

40.00

1

TWIST / M X laog.
24.00 32. 08

'y

75

TEST NO. 11 - NO BRACING - NATURAL IMPERFECTIONS

MECK PLOT OF QUARTER POINT DISPLACEMENTS

THE BRRCE STIFFRESY 13¢ a. 008
INE INITIAL INPERFECTION (S Q. 000

Py

. og o.ss 0. 40

0.05 0.10 a.15 "0.20 0. 25 .30
QUARTER POINT LATERAL DEFLECTION - IN.

Fig. 5.6 Meck plot for Test 11--§/M vs. u.



76

*quauwow A4TABJB H-°*UT | *GZ 9pPNTOUT sjudwow Iy >

*pe30Uu 8STMJ3Y]Oo SSaTun

~—— g1 adeyg

86°0 66°0 2l 90°1L 16°0 9°L66 =~ 022'0 088°0 L2
16°0 860 20°1 20°1L 68°0 9°L6S <~ 0g2°0 G9°1L 92
L6°0 90°L 80°1 Lo"1 88°0 9°L66 << 02z°0 £L°1L G2
G0t gLt 9z2°1 12°1 260 9°L66 000°0 09°1L he
20°1 o 96°1 -— 68°0 9° 166 000°0 06°1L £z
£6°0 6L°1L L6°0 — £8°0 9°L66 000°0 0s2°1 2z
18°0 £8°0 18°0 £8°0 89°0 97165 Rl o 061°0 12
00°1 860 86°0 86°0 £L°0 6°8G5 £LL0 01670 0z
L1 22l £2°1 g2°1 8L°0 L*996 000°0 0£5°0 61
00°1L £0°1 66°0 101 RL*0 0°62S G61°0 02h°0 gL
66°0 20°1 L0°1L 86°0 GL°0 L*€LG 9120 06£°0 Ll
2Ll 80°1 80°1 80°1L 6L°0 L *606 GOL "0 08€°0 9L
HLeL L0°1 90°1L £0°1L GL*0 L *605 G0L°0 08€°0 Gl
80°1 oL'L G2l LL*L 28°0 L*LLG 000°0 00f°0 fl
80°1L gL"1L GL°L L 98°0 8964 000°0 0S£°0 £1
- 86 °0 90°1L 10"t £8°0 G*gEe G02°0 0°0 2l
-— RO 1 £0°1L £0°1L 268°0 26 8EE 1070 0°0 LL
mmmmz mm<mw mmmwz dSVEy Moy dSYE Op-u1) (*ur) (1T1) “oN
/7N Ve V™! 1014 payoeay W * Jaodug SSBUJJTIS 9S8
*1J8q 1STM] *1J3q NBEN JUaIO} suny TET3TUT aoe.g
*qd *dg *ad /1 *qd f/| 3s9y31y dsvd paodoyg
(L = STI) 10Td IT8MY3nog

SLINS3Y JOHLIW DNILLIOTd

L*G 374Vl



77

*juamwow AjTABJS ¥-UT | *GZ 9pnIoUT sjusawouw Iy 2

*pajou aSTMJBY30 ssaTun ~—— s adeyg

——— G0° L 90°1 L0°1 £0°1L 9° 65 000°0 +1g1 o€
G6°0 £0°1L L0"1 G0°1L G6°0 9°L6G =~~~ 8l2°0 2°¢ 62
00°1L 0L G0* 1 90°1L 286°0 297466 = |0zz"0 6°2 82
mmmmz mmmwz mmmmz dSvey, 4oy dSYE (%=*ut) ("ut1) (TT) *ON
/"W /"W /"W 3014 payoeay dSvey * Juadug SSAUJJTIIS  3SIL
" 1J3q "ISTML " 1Jaq Hoo JUBWOY suny TeTqTuUI soedg
*3d *4g *ad /1 cad y/1 3s9y31y dsvd pa0.0y

(L =

STI) 301d TTI8Myjnog

(Panutjuoo)

SLINSdd JOHLIW ONILIOTd

L°G 314Vl



78
the fourth column. The highest moment attained during each test is
normalized by the BASP bifurcation moment as in column 5 and as are the
results of the plotting methods shown in the remaining columns. The
results for the Meck plots are tabulated in column six and those for the
Southwell plots are shown in the seventh through ninth columns. In some
tests, scatter as high as 10% of the critical moment was observed
between the results for the Southwell plots of the three buckling dis-
placements measured. This scatter was most pronounced for the tests
having forced initial imperfections and for tests having brace stiff-
nesses smaller than the ideal stiffness. The scatter was least where
the beam buckled into the second mode shape. The Meck plots taken at
the quarterpoint flange give results which are close to the average of
the critical moments given by the Southwell plots. Typically, when one
Meck plot had a significant decrease in slope, the other had an
increase. The critical moment, from Eq. (5.3), was seen to be constant
despite these changes in slope from one part of the plot to the next.
For beam buckling tests, the Meck plots are more consistent than the
Southwell and Lundquist plots since they tend to compensate for errors
which distort the other plot types. The use of Meck plots is more
appropriate for beam buckling tests where the lateral deflection and
twist are recorded at a common location. The correlation between the
critical load obtained from the Meck plots and the theoretical BASP
prediction was fairly good; in most instances, the difference between

the two loads was less than 10%.
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No clear correlation was observed between the initial imperfec-
tion calculated from the plotting methods and the magnitude of the
forced initial imperfection. This may be the result of the presence of
initial moment as a consequence of forcing the section laterally. Also,
the initial shape consists of a lateral deflection and twist which each
may have components of mode shapes other than that of buckled shape and
will affect the ability of the plotting methods to predict that initial
shape.

Once the critical moment and initial imperfection are calculated
from the plots, the resulting hyperbolic curve can be passed through the
data points to assess the degree of fit. Figure 5.7 shows the hyperbola
from a Southwell plot analysis superimposed on the quarterpoint twist
data for Test 11. 1In this case, the moment-displacement curve was
strongly hyperbolic throughout the entire range of moment. This was not
true, in general, for the low moment range of tests having forced imper-
fections and was indicative of the inability of the plotting methods to
provide a correlation between the calculated imperfection and the magni-

tude of the forced imperfection.

5.4 Moment vs. Brace Stiffness

The critical moments from the Meck plots are judged to be more
reliable for beam buckling tests than those predicted by the Southwell
and Lundquist plots. Figure 5.8 shows the critical moments from the
Meck plots vs. the brace stiffness for that test superimposed on the
BASP results from various brace stiffnesses. The critical moment for

this unbraced case was within 3% of that predicted by BASP as seen
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numerically in Table 5.1. The moments for the large number of tests
which had a brace stiffness of approximately 400 pli ranged from 2%
below to 17% above the BASP value. The increase in critical moment with
increasing brace stiffness is apparent for Tests 11 through 21 which
buckled into the first mode shape. The tests buckling into the second
mode shape did not show a corresponding increase in moment. The criti-
cal moments from the Meck plots ranged from 2% to 7% above the BASP
value for all but one of the second mode tests.

The theoretical value of the ideal brace stiffness is 0.70 kli
using Egq. (2.7). Using BASP, the ideal stiffness for the test setup is
0.60 to 0.65 kli depending on the choice of starting mode shape for the
BASP solution. The 15% difference is reasonable since BASP included the
effect of the warping restraint at the ends of the test span. As seen
in Fig. 5.8, the tests which buckled into the first mode fall to the
left of the ideal stiffness and those buckling into the second mode are
to the right. This confirms the assertion that a finite brace stiffness
is sufficient to buckle the beam into the second mode shape. The pre-
cise value of the ideal stiffness could not be determined experimentally
but its magnitude was between 0.53 and 0.88 kli which is consistent with
the theoretical value of 0.70 kli.

After analysis of the plots of the 20 tests, Tests 22 and 23 were
considered invalid due to unwanted restraint. In these tests, a
restraint angle was discovered to be touching the test specimen at high
moments which caused the section to twist only in a direction opposite

to the buckling displacement. The extrapolated critical loads from
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Tests 19, 20, and 21 were considered suspect. The critical moments for
these tests varied by almost 50%, although the brace stiffness varied
only 4%. Test 19 had no forced imperfections, whereas Tests 20 and 21
had forced imperfections of L/2000 and L/1000, respectively. The criti-
cal moment for Test 20 is very close to the value predicted by BASP but
it should be rejected since the critical moments for its companion tests
are erratic. Test 21 had a greater brace stiffness than that in Tests
17 and 18, and the initial imperfection was similar in all three cases,
yet the experimental critical load is lower. The proximity of the brace
stiffnesses used in these tests to the ideal stiffness causes the beam
to buckle with a combination of the first and second mode shapes which
skews the results of the plotting methods. In order to get reliable
test results near the ideal brace stiffness, ultimate strength tests
should be performed.

In Tests 13 through 27 which buckled into the first mode shape,
the brace force was expected to increase toward an infinite value as the
critical moment was approached. To avoid yielding of the specimen, the
tests were stopped at moments between 75 and 90% of the critical
moments. As seen in Table 4.1, the brace force never exceeded 0.4% of
the compression region force, which varied between 30 and 60 kips,
depending on the moment. These brace forces were larger than those of
the tests buckling into the second mode shape where the brace force was
expected to reach a limiting value. The largest brace force for the
second mode tests was recorded in Test 30, which had an 18 kli brace

stiffness and was taken to failure. This force was 97 1lbs, which was
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0.16% of the compression region force. This brace force can be esti-
mated analytically using Eq. (2.10):

(4P __/L)
=Br = —CEL (A 4 A (2.10)

Fbrace A (1 + b/bo) o}

Although no forced imperfection was imposed on the specimen in Test 30,
an initial imperfection of L/1000 is assumed to be present. P,. equals
69.2 k for the second mode and the correction factor for the enhanced
effectiveness of the brace at the top flange; (1 + b/bo) is 1.84,
Assuming the 18 kli brace to be rigid, so AA= 0, the brace force is
calculated to be 150 1bs. This result is 50% greater than the 97-1b
force observed, but is judged to be a reasonable estimate. The calcula-
tion might have been closer if the magnitude of the imperfection in the
test specimen was accurately known.

Using Eq. (2.10), the total deflection divided by the length, mo

+Z%)/L, can be related to the ratio of brace force to the critical load

as

Fy 4 A +A
race )

PCr 1+ b/bo) L

) (5.4)

for the second mode tests. Since Fppgce/Por 15 less than 0.14% for
these tests, the ratio (AO+AA)/L is less than 0.07%, or 0.7/1000.
Therefore, if the magnitude of this ratio is assumed to be larger than
0.7/1000 in Eq. (2.10), say 1/1000 or greater, the calculated brace

force will be conservative.



CHAPTER Vi

EXAMPLE PROBLEMS

The purpose of these example problems is to demonstrate the use
of the equations in Chapter II for the buckling of braced beams and to
show that it is possible to apply the results of column bracing solu-

tions to beams.

6.1 Beam Braced at Midspan

Consider a W12x16 beam, 216 in. long, loaded by uniform moment
and braced at the midspan of the compression flange as in Fig. 2.3. The
ideal brace stiffness is calculated using Eq. (2.7) as

k "
APEZ/L 4(69.27)/(216™)

Bideal = - = 0.70%%6. 1)
(14b/b_) (145.99"/7.27")

where by 15 calculated using Eq. (2.4) withy= 157.4 and a = 0.5. The
critical moment for this case is U490 in.-k. These results have been
confirmed using BASP and the buckled mode shape is shown in Fig. 6.1.

As discussed in section 2.2, the "beam flange as a column" anal-
ogy has been employed to calculate the required brace stiffness for

beams. Using

B = 4 P/L .3

the proper "force," P, for this equation is
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P P b M
cr cr o cr

P=——— = = (6.2)

(14+b /bo) b+bo b+bO

Since b+ by will always be greater than the depth, d, the force P can

be conservatively calculated as

P = M_./d (6.3)

In the example above, Mcr/d = 41 k and the brace stiffness, calculated
using Eq. (1.3), is 0.76 kli, which is 9% larger than the 0.70 kli
calculated using Eq. (6.1). Since (1 + b/by) is between 1.70 and 1.85
for most economy shapes with al/d = 10, the brace stiffness calculated
using Mcr/d as the force will be between 9 and 18% larger than the
stiffness calculated using Eq. (6.1).

The compression region force has alsc been used, as P, 1in Eq.
(1.3)s In this case, the compression region force is calculated by
integrating the stresses over the area above the neutral axis and is 48
k. The brace stiffness, using Eq. (1.3) is 0.89 kli, which is 27%
larger than that given by Eqg. (6.1).

In summary, the force in Eq. (1.3) can be taken as‘Mcr/d to
obtain a reasonably accurate brace stiffness. However, the quantities
Por and by are used directly in Eq. (2.5) and indirectly in Eq. (2.2)
when M,,. is calculated and could easily be employed in Eq. (6.1) for the

exact value of the ideal brace stiffness rather than resorting to

approximations.
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If a brace having the ideal stiffness is attached to an imperfect
beam, the second mode moment can be attained only after the brace point
has deflected an infinite distance, as given by Egq. (2.9). Assuming the
beam has an imperfection at the midspan of L/1000, or 0.216 in., the
stiffness necessary to limit the additional deflection to L/1000 also is

calculated by rewriting Eq. (2.9) as

A

_ (0]

Breq'd - Bideal -+ )
A
A
11 /1000 el (6.4)

=0.70% (1 + —— ) = 1.40%7

L/1000

A stiffness of twice the ideal value of 0.70 kli, or 1.40 kli, is
required to limit the additional deflection to the magnitude of the
initial imperfection at the brace point. The brace force is given by
Eq. (2.10) as

F = 8n, = (1.40%)0.216") = 0.3% = 300 1b (6.5)

brace A
Safety factors should be applied to the results above before their use
in design. The specification of safety factors is not within the scope

of this study.
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6.2 Distributed Brace Along
the Compression Flange

The form of Eq. (2.5), M,,. = P,. by, suggests that other solu-

cr
tions for braced columns can be applied to braced beams. For example,
the stiffness of a brace distributed along the length of a column neces-
sary to attain the second mode load, a = 0.5 in Eq. (2.3), is equal to
the ideal brace stiffness for a brace at midspan divided by half the
length of the column [10]. For a W12x16 column, 216 in. long, this
stiffness is

B, 4(69.2%) /216" s

ideal kli/in.

B.. . = _3deal _ =0.011 (6.6)
distr 0.5L 0.5(216™)

A column with a distributed brace of 0.011 kli/in. will carry the second
mode load of 69.2 k. This result is confirmed by BASP and the buckled
shape is shown in Fig. 6.2. When a brace stiffness of 0,015 kli is used
the column buckles into the second mode shape, as shown in Fig. 6.3.

The results above can be used to find the distributed brace
stiffness at the top flange of a beam loaded by uniform moment which
will enable it to carry the second mode moment of 490 in.-k, as calcu~
lated in section 6.1. The brace stiffness for the column, Eq. (6.6), is
divided by the correction factor for a brace at the top flange (1 +
b/by) = 1.84, to get a distributed brace stiffness of 0.006 kli/in.
Using BASP, the critical moment for this stiffness is 502 in.-k, which
is within 2 percent of the second mode moment of 490 in.-k. At this
moment, the beam is buckled into a shape similar to the first mode

shape, as shown in Fig. 6.4.



90

"9deys Ipow 3SATF -~ uwnjod pooeiq ATsnonufjuoy gz°'9g -Sig

33448 "HISIA “NI/IM 1100

—
D1

0

0s "o~

10

L d 00 "o¥e 00 "002 00 "091 00021 00 08 ao "od 00
u\;\l\t} [l 1 i 1 L
I~
I
o 2 1o
o 69 -Tan-"a
- A
M
vLo“ |

i 13005 ﬁuu& sagueTq :uon\\\\\\\
pue proijua)
auo1 WIxy INDT 0-.81 9l X CIM

$3187d 03N34311S 40 SISAIUNY INIIMING-dSug

0o o

SNDIL337430 BY3L87 0321 TUWHON

0s 0

0o



91

*adeys opoW PuUOIIS--9DBIQ SNONUIIUOD YITM uWNTO) ¢€°'9 *8T4

33648 "HISIO °NI/ZITM SI0°0

* .HUnH

cc.oww 0 omw cc.om_ Qa.cm

0T *3°¥ uf se
12 a2

&ow = ds= d

z.\:..m_o.o“Q\t* Hum sagueTd yjoq
pue proilua)n

auo1 WIXy INDT1 0-.81 91 X CIM
S31471d 03INI44I1S 4D SISATTUNY ININMING-JSud

0o

T

0s ‘o~

oo o

SNRI1J377430 BH31YT 03Z17THWHDN




92

*a8uriy uoFssa1dwod 3B 828iq SNONUTIUOD Y3IJa wesg 4°9 *3Ta

3J0dd ""LSIA “I/17M 900°0 ‘

00 .c-.w 00 "00¢2

00 .cw._ 00 .cw._ 00 .Jm 00 "O¥ 00

-TUt Q6% = “A-"UT Z0§ =

a8ueTg wojjog

ao
KH

a3uety dog

IN3HOW 3HNd 9NO1 0-.8I1 91 X CIM
S31U1d 03INIJ4I1LS 40 SISATIENY INITHING-dSHE

o
0o " 1-

0s ‘0~

F

00
SNDIL1J37430 BH31ET Q3ZITHWHON

0SS0

0o 1



93

In summary, the buckling of braced beams loaded by uniform moment

is similar to that of braced columns. Other solutions for braced

columns may be found to be applicable to beams if analytical verifica-

tion, such as by the program BASP, is made for these cases.



CHAPTER VII

CONCLUSIONS

The objectives of the testing program were to provide experimen-
tal data on the lateral-torsional buckling of braced beams. Of particu-~
lar interest was the force in the brace, the magnitude of the brace
stiffness necessary to develop a particular critical ﬁoment, and the
effect of the type and magnitude of initial imperfection on the brace
force and critical moment. To accomplish these objectives, a wide-
flange beam was braced at midspan at the compression flange and loaded
by uniform moment. Of the twenty tests reported in this study, all were
conducted in the elastic range except for the last test which was taken
to failure. The variables of the testing program were the stiffness of
the brace and the magnitude and type of initial imperfection. The
experimental findings were:

1) The beam buckled into the first mode shape when the brace
stiffness was less than the theoretical ideal stiffness and
the beam buckled into the second mode shape when the brace
stiffness was larger than the ideal stiffness. The experi-
mental value of the ideal brace stiffness was observed to be
between 0.53 kips per linear inch (kl1i) and 0.88 kli in
Tests 19 and 27, respectively. This experimental value is
in agreement with the theoretical value of 0.70 kli.

2) Brace forces in the tests which buckled into the second mode
shape were observed to approach a 1imiting value and were

94
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smaller in magnitude than 0.2% of the force in the compres-
sion region of the beam. In the tests which buckled into
the first mode shape, the brace forces were increasing
rapidly when the tests were stopped in the elastic range.

In order to perform subsequent tests in the elastic range using
the same specimen, the Southwell, Lundquist, and Meck plotting methods
were utilized to predict the critical moments from the test data. The
critical moments which were determined by the plotting methods are
compared to the bifurcation moment obtained by using the finite element
program, BASP. The analytical findings are:

1) The Meck plots are more appropriate for extrapolating the

critical moment of the test beam than are the Southwell and
Lundquist plots. This is due to the Meck plotfs ability to
compensate for errors which distort the other plotting
methods.

2) Plots of the experimental relationships between the critical
moment and brace stiffness indicate that the finite element
program, BASP, accurately predicts the variation of bifurca-
tion moment with brace stiffness.

3) No clear correlation was observed between the magnitude of
the forced initial imperfection and the magnitude of the
initial displacement predicted by the plotting methods.

4y The "beam flange as a column analogy"” [6] was used to con-
servatively estimate the brace force in the tests which

buckled into the second mode shape.



5)

6)

7)

96

In the "beam flange as a column analogy," the correct force,
P, to use in Eq. (1.3) to obtain the brace stiffness, is
Por/(1 + b/bgy); however, using a force‘calculated as M,./d
will be 9% to 18% conservative for economy sections with
al/d = 10.

In calculating the critical moment for a beam under uniform
moment, Eq. (ZJ1) from the SSRC Guide [1] may be rewritten
in a more concise form as M . = P, by [2] from which the
similarities between the buckling of beams and columns can
be observed.

In determining the required brace stiffness for a dis-
tributed brace at the compression flange of a beam under
uniform moment, the solution for a continuously braced
column [10] can be modified. The required brace stiffness

is B,

ideal/0.5 L where Bj4ea1 is shown in Eq. (2.7). Other

solutions for braced columns may be applicable to beams
under uniform moment if analytical verification, such as by
the finite element program BASP, is obtained for these

cases.



APPENDIX A

BRACED IMPERFECT COLUMN

Differential Equation for a
Braced Imperfect Column

- Elastic brace at midspan, stiffness = B(for unbraced case,f = 0).

o nmx
- Arbitrary initiel imperfection shape, A =X A sin — .
© p=1 oW L

l ¥ - Brace Force

y Deflected Shape
P T P X
ol Arbitrary
F _t, éﬁltlal .t F
2 ape ‘é‘ .
| L 1
' 1

Fig. A.1 Deflections of a braced imperfect column.

Using symmetry, for 0 < x ¢ L/2

nTx

Aon sin ;
1 L

Fx
2E1 n

" ™8
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P d

; the differential operator.
EI dx

The general and particular solution is

Fx
yl(x) = ¢, cos kx + cy sin kx +
2p
o P/n2P 1 nmx
+ I [ _ & ] A sin —
on
n=1 1—P/n2P L
el
where
WZEI
P = ———
el L2
For the right half of the column, use coordinate x' = L - x;
0 < x' £ L/2
Fx'
1 = ' : 1
yz(x ) cy cos kx + c, sin kx +
2P
; P/n2 Py ne1 nrx'
+ [ s—1 (=D p, sin

n=1 1-P/n Pel L



From pinned end boundary conditions

From deflection compatability at midspan

y1(L/2) = yp(L/2); Cp = Cy

From slope compatability at midspan

Dyq (L/2) = -Dy2(L/2) since x = L - x' and Dx = -Dx'

Co = Cy = =(FL/U4P)/((kKL/2) cos kL/2)

Substituting the coefficients and F = BAA = By (L/2) and 0<x<L/2

BA, L 2x sin kx
A
y 0 = —E— (— - —————)
4P L CEL) cos~IEE
2 2
(A. 1)
co P/nzPel nnx
+ I [ —5 ] Aon sin —
n=1,2,3,4... 1-P/n"P L
el
where at midspan
L BAAL tan kL/2
by =y, —) = — [1l-——1 +

I O
2 4P kL/2 ( )

99



100

o 2
P/n"P
+ I [ _____E%__ 1A (_1)(n-1)/2 (A.2, cont.)
n=1,3,5... 1-P/n°B; "

Checking the unbraced case g =0 and 0 < x < L/2

2
L ® P/n"P (n-1)/2
py, =y (—) = ¢ 1 8, 1)
2 n=1,3,5... 1-P/n“P_,

Which for a half wave imperfection with amplitude, Aol' reduces to

X P/P 1
A = A, sin s A T A [ “———E*‘]
o) ol L 0 1'P/Pel

When the brace stiffness,g , is finite,

16ﬂ2EI
Bideal = 16 Pel/L = 3
L
L
at X = —
2
P/nZP
© 1-p/n%P L on
A, = I =
A n=1.3.5 B tan kL/2
Tt (1~ g (1- »
ideal kL/2

which is derived from Eq. (A.2) by solving for AA'



101

The deflection at any other location y,(x) is calculated by
substituting Eq. (A.3) into Eq. (A.1) which is valid for 0 < x<L/2.
For the right half of the beam, multiply the imperfection %n»by (-1)“'1
to get y(x'). Figure A.2 shows the brace point deflections of an imper-
fect column having a half wave imperfection shape and various brace
stiffnesses. The horizontal axis is AA/A01 and the vertical axis is
normalized to P/P 4. The dotted curves are hyperbolas given by Eg.
(A.4) where Aoand Por could be the parameters from a Southwell plot
analysis.

P/Pcr

= A, ———— (A.4)

A
A ° (1-p/P_)

Note that there is a singularity in Eq. (A.3) at P=Pg but values in this
vicinity can be calculated by taking P a very small distance away from

Pe1 on either side which will give the same magnitude for AA.
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APPENDIX B
SUMMARY OF PLOTTING METHOD RESULTS

The following tables and plots represent the results of the
Southwell, Lundquist and Meck plotting techniques. For the Southwell
results, the critical moment and calculated initial imperfections are
shown in Table B.1 for use in Egq. (1.4). Also tabulated are the results
of the finite element program, BASP, and testing parameters such as
brace stiffness, forced initial imperfection and the highest moment
attained during the test. Following this table, a plot of critical
moment vs. brace stiffness is given for the Southwell plots in Fig. B.1.
The tabulation for the Lundquist results in Table B.2 follows the same
format as the Southwell results except that the values of the moment and
deflection at the reference load stage are given since they are required
in Eq. (5.2). A plot of the Lundquist results is shown in Fig. B.2.
The results from the Meck plots using quarterpoint displacements are
shown in Table B.3. The results of Meck plots for the displacements at
the centroid which were calculated from the flange deflection and twist
were also tabulated; however, a greater scatter was observed for the
centroid displacements than for those at the flange. Critical moment
vS. brace stiffness plots for the Meck plots taken at the compression
flange is shown in Fig. 5.8 and the plot for the results taken at the

centroid is shown in Fig. B.3.
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APPENDIX C

FINITE ELEMENT METHOD--BASP

A finite element program, BASP, which stands for Buckling Analy-
sis of Stiffened Plate structures, was developed in 1974 at The Univer-
sity of Texas at Austin [7]. Structures to be analyzed by this program
must have a plane of symmetry which acts as the mid-surface for plate
elements in this plane. Stiffeners or beam elements can be oriented
such that their strong direction neutral axis is in the symmetry plane.
A beam or column having at least one axis of symmetry is easily modelled
where the web is composed of plate elements and the flanges are beam
elements.

The program analysis consists of two parts. An inplane analysis
is performed to determine the normal stresses in the elements, The se
stresses correspond to a set of "unit" loads applied to the structure.
Secondly, the geometric stiffness matrix is constructed to describe the
out-of-plane behavior of the structure. Inverse iteration is used to
find the eigenvalue of the mode to which the solution process converges.
An assumption about the mode shape is required to start the solution
process. This initial guess should be somewhat similar to that of the
desired buckling mode shape. If the program converges on an undesired
mode, the origin of the inverse iteration can be shifted, and the solu-
tion process will search for the mode nearest to this new origin. Once

the eigenvalue is found, the buckling loads are found by multiplying the
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unit loads by the eigenvalue. These loads are the bifurcation load for
the particular mode shape to which the program converged.

The beam in Fig. 2.3 can be modeled as shown in Fig. C.1. In
this figure, the web and flange elements correspond to the dimensions of
a W12x16. The length is 216 in. and the depth is taken as the center to
center spacing of the flanges. At least two elements are used for the
depth of the web to model cross-sectional distortion. If the brace
stiffness at midspan is taken as 0.70 kli, the eigenvalue will be
40.98 k and the critical moment will be 490 in.=k. A plot of the

buckled shape can be seen in Fig. 6.1,
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Indicates Rigid race at Midspan

B
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0.220" Plates £—O.265" x 3.9G" Beams

Fig. C.1 Model of Wi2Zxlé6.
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NOTATION

Area of cross-section

ratio of length associated with buckled mode shape to total
length of beam

distance above shear center to brace attachment

distance below shear center to center of rotation of buckled
shape

warping constant for torsion
depth of section

differential operator--d/dx
elastic modulus

force in brace

shear modulus

St. Venant torsional constant
kips per linear inch

strong axis moment of inertia
weak axis moment of inertia
total length of column or beam
first mode moment

second mode moment

critical moment

moment at a given load stage or along length of beam
load at a given load stage

critical load

first mode or Euler load

117



"

118

second mode moment

load at reference load stage

strong axis section moduli

weak axis section moduli

thickness of web

thickness of flange

lateral displacement of beam

strong axis of wide flange section

weak axis of wide flange section

distance along longitudinal axis of beam
inverse of slopes of Meck plots

brace stiffness

stiffness of distributed brace along column or beam flange
ideal brace stiffness

magnitude of initial imperfection

additional deflection of brace

displacement at reference load stage

torsion constant = (T?ECW/GJ)T/Z

angle of twist about longitudinal axis of beam

pi or 3.14159,..
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